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The partition-functions-per-site ~ of several two-dimensional models (notably 
the eight-vertex, self-dual Potts and hard-hexagon models) can be easily ob- 
tained by using an inversion relation for local transfer matrices, together with 
symmetry and analyticity properties. This technique is discussed, the analyticity 
properties compared, and some equivalences (and nonequivalences) pointed out. 
In particular, the critical hard-hexagon model is found to have the same ~ as the 
self-dual q-state Potts model, with q = (3 + ~/5)/2 = 2.618 . . . .  The Temperley- 
Lieb equivalence between the Potts and six-vertex models is found to fail in 
certain nonphysical antiferromagnetic cases. 

KEY WORDS: Statistical mechanics; lattice statistics; eight-vertex, Ising, 
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complete integrability; factorizability. 

1, INTRODUCTION 

There are a few two-dimensional lattice models in statistical mechanics that 
have been solved exactly, in the sense that their partition function per site 
has been calculated in the limit of an infinitely large lattice. In particular, 
there are the zero-field eight-vertex (8V) model (1) (which includes the Ising, 
three-spin, and zero-field six-vertex models as special cases); the self-dual 
q-state Potts (SDP) model(2); the generalized hard-hexagon (GHH) 
model(3); and the multistate vertex models of Stroganov (4) and Schultz. (5) 
(I shall often drop the adjectives "zero-field" and "generalized.") All these 
models satisfy the star-triangle relation. (6) 
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Recently it has been realized (6'7) that for these models x can be 
calculated quite easily by using an inversion relation for the local transfer 
matrices, together with the appropriate analyticity properties of x. Indeed 
this is basically the technique used by Stroganov and Schultz. It is also the 
way the GHH model was originally solved, (3) though a more conventional 
method has since been used, (s) giving the same results. 

Here I show that this inversion relation (and the star-triangle relation) 
is the same for the 8V, SDP, and GHH models (with appropriate normal- 
ization and notation). Provided their relevant analyticity properties are the 
same, they must therefore have the same partition function per site ~c. In 
this sense I show that the ferromagnetic SDP model is equivalent to a 
six-vertex model, but the equivalence does not always extend to the 
antiferromagnetic case. I also show that the critical hard-hexagon model is 
equivalent to the SDP model with q = (3 +~3-)/2 = 2 . 6 1 8 . . .  ; and that 
the hard-hexagon model in its regimes I, III, and IV (see Ref. 3) is 
equivalent to an eight-vertex model. 

The equivalence between the Potts and six-vertex models is not new, 
having been established by Temperley and Lieb. (9) Here I consider the 
anisotropic square lattice q-state Potts model, with interaction coefficients 
K, L satisfying the self-duality condition (3.32). The Temperley-Lieb 
equivalence is certainly correct for the ferromagnetic model, when K and L 
are positive real, but in Section 5 I show (guided by the Ising case q = 2) 
that it fails (due to sensitivity to boundary conditions) if e K or e L have real 
part less than 1 - �89 q. 

Such cases are unphysical, in that K and L are not both real (for 
q > 1), but they are still relevant to the dependence of the partition 
function on K and L. [Also, the critical point of the true hard-hexagon 
model is equivalent to such a nonphysical SDP model, with q = (3 + 4~-)/2, 
e r = 1 - q, and e L = 0.] I obtain expressions for x in these cases, provided 
that 1 < q < 4, but I do not see how to extend these to 0 < q < 1 or to 
q > 4 .  

I have not seen this limitation of the Temperley-Lieb equivalence 
previously discussed, but some evidence that the nonferromagnetic cases 
may be difficult is afforded by the fact that the critical point does not then 
correspond to the self-dual point. (~~ 

In Sections 2-5 I focus attention on the six-vertex, SDP, and critical 
hard-hexagon models. This has the advantage that the Temperley-Lieb 
equivalence can be discussed, showing how it is related to the star-triangle 
relation and a linearity property of the Boltzmann weights. It also avoids 
the need to introduce elliptic functions. In Section 6 I extend the relevant 
results to the eight-vertex and hard-hexagon models. 

I do not consider the Stroganov and Sehultz models explicitly, but 
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these satisfy the star-triangle relation and appear to have the linearity 
property required in Section 2, so they should fit into the discussion of 
Sections 2, 4, and 5. Unless they have unexpected analyticity properties, 
they should therefore be equivalent to a six-vertex a n d / o r  SDP model. It 
would be interesting to check this directly. 

Note that here I use the word "equivalent" to mean simply that two 
zero-field models have the same K for certain values of their parameters, 
and possibly that their local transfer matrices belong to the same algebra. 
This is a very weak form of equivalence: it does not imply that their order 
parameters are the same, so it does not contradict the finding that the 
critical exponent 8 is 15 for the eight-vertex model, 14 for the hard-hexagon 
model. Nor does it contradict the argument {~'3~ that the critical behavior 
of the hard-hexagon model should be that of the Ports model with q = 3, 
rather than q = (3 + ~ - ) /2 .  

. STAR-TRIANGLE RELATION 

For a very large class of square-lattice models in statistical mechanics, 
the partition function can be written as 

Z = Tr (VW) m 

where 

(2.1) 

V = X 1 X 3 X  5 . . .  X , _  l 
(2.2) 

W =  X 2 X 4 X  6 . . . X n 

n being even. For instance, for the Ising and Potts models on a lattice ~ of 
m rows and n / 2  columns, X2j_ 1 can be taken to be the local transfer matrix 
that adds to the lattice a vertical edge in column j ;  and X2j to be the matrix 
that adds a horizontal edge between columns j and j + 1. For the Ising 
model these matrices are of dimension 2"/2; for the q-state Potts model they 
are of dimension qn/2. 

For the vertex models, expressed in terms of placing arrows on the 
edges of the lattice ~, (2.1) is the partition function of a square lattice that 
has been turned through 45 ~ each Xj corresponding to adding a site (or 
vertex) to the lattice. For the interactions-round-a-face, or " IRF,"  mod- 
els, (6) we use the dual of the previous lattice: each Xj then corresponds to 
adding a face to the lattice e. The eight-vertex and six-vertex models can be 
expressed either as vertex models, (12) or as IRF models. (~3) The hard- 
hexagon model is an IRF modelJ 3'6) 

Let 

N = mn  (2.3) 
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be the total number of Xj's in (2.1). We are interested in calculating 

= lim zl/U (2.4) 
N---> oo 

where the limit is to be taken through large values of both m and n. For the 
Ports model this is the partition function per edge, while for the vertex and 
IRF models x is the partition function per site. 

The nonzero elements of each matrix ~ are the Boltzmann weights of 
the corresponding edge, site, or face of s Let Xj be another matrix, formed 
from Xj by merely varying these weights. Then X i and Xj commute if i and 
j are nonadjacent columns of E, i.e., 

X i X j  = Xj :Xi  for ]i - j [  /> 2 (2.5) 

Let C t be the total class of matrices X t . . . . .  X, that can be formed by 
varying the Boltzmann weights in this way. Then the exactly solved models 
listed in Section 1 have the property that there is a subclass C of C t such 
that if Xj and Xj are members of C, then there exists Xj" (also a member) 
such that 

X j S j +  iSjf '  = Sj~_ i S j S j  + 1 (2.6) 

fo r j  = 1 . . . . .  n. For the Ising model this is the star-triangle relation, (14-16) 
so it is convenient to give it this name in general. The relation also occurs in 
field theory, as I remark at the end of this section. 

The significance of (2.6) is that it implies that the diagonal-to-diagonal 
transfer matrices commute. (1"17) A proper discussion of this point involves 
the cyclic boundary conditions. Let me merely remark here that if 

r =  x , x  2 . . .  x , , ,  T '  = X ; X ~  . . .  X~ (2.7) 

then (2.6) and (2.5) imply the "quasicommutation" relation 

T T ' A ,  = A ~ T '  T (2.8) 

where 

A l = X I X { ' X ~  - I  
(2.9) 

A, ,  = 

Apart from boundary terms, T and T' are the diagonal-to-diagonal transfer 
matrices of E. When these terms are properly included (first turning 
through 45 ~ so that T and T' become the usual row-to-row transfer 
matrices), then (2.8) becomes simply T T '  = T '  T.  

2.1. Temperley-Lieb Operators 

The six-vertex, self-dual Potts and critical hard-hexagon models can all 
be arranged to have the property that if Xj is a given member of C, then all 
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other members are of the form 

Xj' = a ' I  + fl'Xj, j = 1 , . . . ,  n (2.10) 

where a '  and/3 '  are scalars, independent of j ,  and I is the identity matrix. 
In this sense the class C is linear, any linear combination of members being 
a member. 

Given any values of a '  and/3 '  it follows that there exist scalars a"  and 
/3" such that (2.6) is satisfied, with 

Xj" = a " I  +/3"Xj ,  j = 1 . . . . .  n (2.11) 

Substituting these expressions into the star-triangle relation (2.6), we obtain 

~176 Xj+l)'t- ~ 2 -  Xj 21) "l-t~l'21tl"4tt[Xr- \ j X j + I X j -  Xj+lXjXj.+l) =0 
(2.12) 

Looking at some particular nonzero element of this matrix equation, it 
follows that a"  and /3" are related to a '  and /3' by an homogeneous 
equation of the form 

aa' a" + ba'/3" + c/3'/3" = 0 (2.13) 

where a, b, c are fixed constants. We can use (2.13) to express a " , / 3 "  in 
(2.12) in terms of a '  and/3 ' .  The resulting equation has to be an identity, 
true for all values of a ' , /3 ' ,  which gives just two independent equations: 

a X / -  bXj = ,X/+, -  bXj+, (2.14a) 
aXjXj+ ]Xj - cXj = aXj+ 1XjXj+, - cXj+, (2.14b) 

f o r j  = 1 . . . . .  n. 
Let L = a ~  2 - bXj; then from (2.14a) it is independent of j ,  so it must 

commute with all of X l . . . . .  X,. It is therefore a "quantum number"  of 
the matrices, and we can focus attention on a representation in which it has 
some particular value l, i.e., 

aXj 2 - bXj = / /  (2.15) 

where l is a scalar. If we define a set of matrices U 1 . . . . .  U. (belonging to 
C) by 

Xj = O(I + xUj)  (2.16) 

then it follows that we can in general choose the scalars O and x so that 
(2.15) and (2.14b) become 

Uj 2= q'/2Uj (2.17a) 

UjUj+, U j -  Uj = Uj+, UjUj+ t - Uj+ l (2.17b) 

where j = 1, . . . ,  n and q is a scalar. 
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and 

Let Sj be either side of (2.17b). Then it is readily verified that 

sjvj  = vjsj = q'/ sj 

S j U j +  1 ~- Uj+IS j = ql/2sj 
(2.18a) 

Sj2= ql /2(q  _ 1)Sj (2.18b) 

If we consider one particular value of j ,  and look at a representation in 
which Sj is diagonal, then these equations imply that Sj, Uj, Uj+ 1 all break 
up into diagonal blocks. In one block Sj = 0; in the other block Sj 
= ql/2(q _ 1)I and Uj = Uj+ L = ql/=I. We can restrict our attention to the 
former, in which case we can set Sj = 0. 

I would like to be able to generalize this argument simultaneously to 
all values of j ,  but have not been able to do so using (2.17) only. However, 
in fact it is true for the six-vertex, SDP, and critical hard-hexagon models 
that U 1 . . . . .  U n can be chosen so that Sj = 0 for j = 1 , . . . ,  n. The 
relations (2.17) and (2.5) then become 

Uj 2 = q'/2Uj (2.19a) 

UjUj_+IU j = Uj (2.198) 

U/Uj = UjU~,  [ i - j [  >/2 (2.19c) 

for i ,  j = l , . . . , n .  
Thus the relations (2.19) are "almost" a corollary of the star-triangle 

relation. Conversely, from (2.10) and (2.11) it is obvious that X] and X S 
can be written similarly to (2.16): 

Xj' = p ' ( I  + x 'Uj  ) (2.20) 

x ; = o " ( I +  x ' V j )  

where p', p ' ,  x', x" are scalars. The relations (2.19) then imply that the 
star-triangle relation (2.6) is satisfied, provided only that 

x" -- ( x ' -  x ) / (1  + ql/2x + xx ' )  (2.21) 

[This is Eq. (112) of Ref. 18.] 
Up to now I have implicitly used cyclic boundary conditions, so in 

(2.19) the indices i, j and their difference i - j are to be interpreted modulo 
n. It is easier to discuss (2.19) if we instead use free boundary conditions, 
which implies that we take U~ and U n to commute for n t> 3, and ignore the 
equation (2.19b) if it involves U0 or U,+ 1. There is then no direct relation in 
(2.19) between U 1 and U,, other than the commutation property (2.19c). 

The relations (2.19) then define a finite-dimensional algebra. For 
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instance, for n = 2 any sum of products of U 1, U 2 can be written as 

aoI + a l U  1 + a2U a + a3UIU 2 + agU2U 1 (2.22) 

where a o . . . .  , a 4 are scalars. For general n, let P be any element of this 
algebra, and let 

R = q("+ I)/4U 1U3U 5 . . . U n, (2.23) 

where n' is the largest odd integer not greater than n. Then 

R P R  = r ( P ) R  (2.24) 

where r (P )  is a scalar that is completely determined by (2.19). For instance, 
for the simple n = 2 case, with P given by (2.22), 

r ( P )  = qa o + q3/2a] + ql/2a 2 + qa 3 + qa 4 (2.25) 

For the Potts model with free boundaries, the partition function is 
given not by (2.1) and (2.2), but by 

I f  = 7"[ Wf( VfWf)m] (2.26) 

~ f " ~  X I X 3 X  5 �9 �9 . X n 
(2.27) 

w j  = x 2 x , x 6  . . . x . _ ,  

where n is now odd. Thus Zf  is determined solely by the equations (2.16), 
(2.19), and (2.23)-(2.27): it does not depend on the representation used for 
the matrices. 

In the next section I shall write down the matrices Xj and Uj for the 
six-vertex, self-dual Potts and critical hard-hexagon models. They are quite 

n+4 __ s n + 4  5 different, being of dimensionality 2 "+l, q~,,+1)/2, ts + _ ) / ~ - ,  respec- 
tively, where 

s_+ = (1 + q5-)/2 (2.28) 

Even so, they satisfy (2.16) and (2.19). If they have the same values of 0, x, 
and q, then it follows that they must have the same partition function Zf. If 
we make the usual assumption (which I shall question) that the limit (2.4) is 
independent of boundary conditions, then K must be the same for all three 
models. 

These considerations can be extended to the case when 0 and x in 
(2.16) depend on whether j is even or odd (though the resulting problem 
has not in general been solved). Temperley and Lied (9) thus showed that 
the general square-lattice Potts model is equivalent to a staggered (i.e., 
alternating) six-vertex model. This equivalence was later established graphi- 
cally, using the free-boundary conditions of this paper. (~9) 
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2.2. Homogeneity and Symmetry 

Return to regarding 0 and x as independent of j .  Then Z and ~ are 
functions of p, x, and q, so we can write x as x(p,x ,q) .  From (2.4), (2.1), 
and (2.16) it is obvious that K is homogeneous and linear in P, i.e., 

x(O,x,q)  = o x ( l , x , q )  (2.29) 

Also, for the specified models listed in the next section, rotating the lattice 
through 90 ~ is equivalent to replacing the right-hand side of (2.16) by 
p(xI  + Uj), where these new Uj also satisfy (2.19), with the original value of 
q. It follows that x must satisfy the symmetry relation 

~(O,x,q) = x(xo ,  x - ' , q )  (2.30) 

2.3. 

tion 

Inversion Relation 

From (2.16) and (2.19a), inverting Xj is equivalent to the transforma- 

p-->p- ' ,  x---> - x / ( 1  + q~/2x) (2.31) 

When x = 0, then Xj = OI and it is obvious from (2.1)-(2.4) that x = p. By 
expanding about the point x = 0, I have argued (6) that x can be analyti- 
cally continued through x = 0, and that the resulting analytic function 
satisfies the same inversion relation as Xj, i.e., 

( - x  , q ) = l  (2.32) x(p,x,q)tCac p-S,  1 + ql/2x 

where x is the true partition function per site on one side of x = 0 (say x 
positive), and xac is its analytic continuation to the other side (x negative). 

This argument has recently been put on firmer footing. r The star- 
triangle relation (2.6) ensures that the diagonal transfer matrices T com- 
mute for different values of x (but the same q). This implies that their 
eigenvalues are entire functions of x. It follows that x has a different 
analytic expression for x positive from that for x negative, that each can be 
analytically continued across x = 0, and that each satisfies (2,32). 

The relations (2.29), (2.30), and (2.32), together with some basic 
analyticity properties of x, considered as a function of the complex variable 
x, completely determine x. The main purpose of this paper is to investigate 
these properties and the resulting solutions. This is done in Sections 4 and 
5, but before finishing this section it is convenient to establish some further 
notation. 

Applying the rotation symmetry (2.30) to (2.32), and using (2.29), gives 

x(p,x,q)xac(p -1, - x - q,/2, q) = - x ( x  + ql/2) (2.33) 
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where now/r is the analytic continuation of x through x = m. The relation 
(2.32) applies in the neighborhood of x = 0; (2.33) applies in the neighbor- 
hood of x = m: I shall therefore refer to x = 0 and x = ~ as inversion 
points. 

The point x = 0 is a fixed point of the transformation (2.31); the other 
fixed point is x = - 2 q - ] / 2 .  The arguments that lead to (2.32) do not apply 
t o  this fixed point, since Xj is not here proportional to the identity matrix 
(though its square is). If/r is interpreted as the analytic continuation of 
through this fixed point, then (2.32) is not necessarily true. (This is because 
the analytic continuation can be a multivalued function of x.) I shall 
therefore say that x = - 2 q  -1/2 is a virtual inversion point of (2.32). Simi- 
larly, x = - q l / 2 / 2  is a virtual inversion point of (2.33). 

From now on let us take q and q]/2 to be positive real. For q > 4 it is 
convenient to transform variables from p, x, q to 00, u, X by 

ql/2 = 2 coshT~ 

x = sinh u/sinh(X - u) (2.34) 

9 = posinh( ~ - u) /s inh 2, 

where 

X > 0, 0 < Im(u)  < ~r (2.35) 

Then (2.16) becomes 

Xj = O0 [sinh (h - u) + (sinh u) Uj]/sinh ~ (2.36) 

the inversion points x = 0, m become 

u = 0,X (2.37) 

and the virtual inversion points x = - 2 / q  1/2, - q l / 2 / 2  become 

u = �89 li~r + X (2.38) 

Regarding O0 and X as constants, u as a variable, and writing x as x(u), 
the symmetry and inversion relations (2.30), (2.32), (2.33) become, using 
(2.29), 

x(u) = x ( X -  u) (2.39) 

X(U)Xac ( -  U) = o2sinh(h - u)sinh(h + u)/sinh2X (2.40a) 

x(U)Xac(2X -- U) = p02sinh u sinh(2X - u)/sinh2X (2.40b) 

the last two equations being valid in the neighborhood of the inversion 
points 0, h, respectively. 

For q < 4 the parameter X becomes pure imaginary and it is conve- 
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nient to replace u, 2~ by iv, il*. The equations (2.34)-(2.40) then become 

ql/2 = 2cos / , ,  x = s inv/s in(  t* - v) (2.41) 

p = p0sin( # - v ) / s i n / ,  

0 < / ,  < ~r/2, 0 ~< Re(v)  < rr (2.42) 

Xj = P0[sin(/, - v) + s invUj ] / s in / ,  (2.43) 

v = 0, / ,  are inversion points (2.44) 

r ~r + tt are virtual inversion points (2.45) v = ~ ,  2 

~(v) = x(/ ,  - v) (2.46) 

x(V)Xac(-v  ) = p02sin(/, - v)s in(#  + v) /s in  2/,  (2.47a) 

x (v) Xar # - v) = p02 sin v sin(2/, - v) /s in  2/,  (2.47b) 

The case q = 4 can be handled by taking the limit q---> 4 + or q--->4-. 
U tt Using the q > 4 notation, let u, u', be the values of u corresponding 

to x, x', x" in (2.16) and (2.20). Then the condition (2.21) becomes very 
simple: 

u ' =  u ' -  u (2.48) 

(This is closely related to the "transformation to a difference kernel" that 
occurs in the Bethe ansatz. (2~ Still regarding ~ and P0 as constants, Xj is 
a function of u, so the star-triangle relation (2.6) can be written more 
explicitly as 

Sj(u)Xj+l(U")Sj(u t -  u) = Sj+l(U t -  u)Sj(u ')Sj+l(U ) (2.49) 

The inversion transformation (2.31) corresponds to the relation 

Xj (u )Xj ( -  u) = [p02sinh(?~ - u)sinh(3~ + u) /s inh2~]I  (2.50) 

Appropriately normalized, the matrix Xj(u) becomes the S matrix of 
field theory: (2.49) and (2.50) are then the conditions for complete integra- 
bility and factorizability. (22) 

3. SPECIFIC MODELS 

As I remarked in Section 2, the six-vertex, SDP, and critical hard- 
hexagon models all have local transfer matrices satisfying (2.6), (2.16), and 
(2.19). In this section I shall define these models and thereby give three 
explicit representations of the Temperley-Lieb algebra (2.19). In each case 
I start by defining a more general model (eight-vertex, Potts, and hard- 
hexagon, respectively). Here I shall use the Ising-like formulation of the 
vertex models. (13) 
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It is convenient to start with the very general "interactions-round-a- 
face" (IRF) model. ~6) Take g to be the square lattice turned through 45 ~ 
with N sites. At each site i place a "spin" o i which has some discrete set of 
allowed values. To each face (i, j ,  k, l), where i, j ,  k, ! are the four sites 
round the face, arranged anticlockwise from the bottom, assign a Boltz- 
mann weight w(o~, 0i, ok, ol). The partition function is 

Z = Z ~I  w(~176176176 (3.1) 
a ( i , j , k , l )  

where the product  is over all faces and the sum is over all values of 
al . . . . .  ON. This can be put into the form (2.1), where Xj is a matrix whose 
rows are labeled by the spin set ~ = {a~ . . . .  , a , ) ,  whose columns are 

! labeled by ~' = {~'1, �9 �9 �9 %),  and whose elements are 

( x j ) . ~ , =  ~(o, ,o , , )  �9 �9 �9 ~ ( o j _ , , o j _ , )  

xw(~.,oj.,,o;,oj_,)8(oj+,,~;+,)...8(o.,,,,,) (3.2) 
for j = 1 , . . . ,  n. If each o~ has two values, then Xj is a 2" x 2 ~ matrix. 

If we use cyclic boundary conditions, as in (2.1) and (2.2), then the 
indices in (3.2) should be interpreted modulo n. If we use free boundary 
conditions, as in (2.26) and (2.27), then we should extend the spin sets to 

! p er= {o0, o l . . . . .  o~+l), n ' =  { ~ ) , o l , . . . ,  a~+l}, and introduce extra fac- 
tors 6 (a o, o~), 6 (o~ + l, on + 1) into (3.2). 

3.1. Eight-Verlex Model 

Let each spin o i take the values + 1 and - 1 ,  or simply + and - .  
Then for the eight-vertex model w is defined by 

w(a,/~,~, ,8)  --- w ( - a , - 3 , - T , - ~ )  

w ( +  - + - )  = o~2 

w(--F -F - - )  = 034 

w ( +  - + + )  = ~ 

w ( -  + + + )  = ~ 

for a, t ,  y, ~ = _+ 1, and 

~ ( +  + + + ) = O ~ l ,  

~ ( + - -  + ) = ~ 3 ,  

w ( +  + + - ) = ~ 5 ,  

w ( +  + - + )  = o~7, 

(3.3) 

(3.4) 

The o~ 1 . . . . .  o~ 8 are "vertex weights." Here I shall consider only the 
"zero-field" case, when 

co 1=co 2 and r 3 ~ w  4 (3.5) 

Define a, b, c, d, s, t by 

~1 . . . . .  w8 = a ,a ,b ,b ,  cs, cs-~,dt ,  dt -~ (3.6) 
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It is easy to see (12) that  for cyclic boundary  condit ions the weights 0)5 and 
0)6 must  occur in pairs. So must w 7 and 0)8. Thus  Z is independent  of s and 
t, so x is a funct ion only of a, b, c, d. It is an even funct ion of each variable, 
i.e., 

x ( + a ,  ___b; _.T_c, + d )  = x(a,b;c,d)  (3.7) 

for all independent  choices of the signs. It also satisfies the symmetry  
property 

x(a,b; c,d) = x(b,a; c,d) (3.8) 

corresponding to rotating the lattice through 90 ~ and then negating spins in 
alternate columns. 

Six-Vertex Model. 
vertex model by setting 

The  six-vertex model  is obta ined from the eight- 

*0 7 = t0 8 = d = 0 (3.9) 

In this case the model  can be solved even in the presence of fields, i.e., 
when (3.5) is violated. (2~ It would be interesting to consider this case 
from the present viewpoint, but  I shall only consider the zero-field case. 

Two parameters  that occur  in the solution of this model  are 2x and X, 
where 

A = (a 2 + b 2 - c2)/(2ab) = - c o s h X  (3.10) 

We can choose s in any convenient  way. It follows that we can define p and 
x so that 

0)1 . . . . .  0) 6 = p(l ,  1,X,X, 1 + xe ~', 1 + xe -x) (3.11) 

F rom (3.2) and (3.4), it follows that  Xj is then of the form (2.16), where 
Uj depends on X, but  not  on p or x. The  elements of Us. are given by the 
r ight-hand side of (3.2), with the funct ion w replaced by 

�89 -- Oj_ lOj+ ,)exp [ �89 ~koj+ ,(oj + aj) ] (3.12) 

We can verify directly that the relations (2.19) are satisfied, with 

qt/2 = 2coshX = - 2A (3.13) 

The  X herein is therefore the same as that  in (2.34)-(2.40). Defining u 
and P0 by (2.34), f rom (3.6) and (3.11) we obtain 

[a,b,c] = O0cosech) t [ s inh(h-  u) , s inhu,  sinhX] (3.14) 

Alternatively, using the/~, v of (2.41)-(2.48) 

[a,b,c] = p0cosec/z[sin(bt  - v ) , s inv ,  sin/x] (3.15) 

With these identifications, all the relations of Section 2 apply to the 
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six-vertex model. By using the evenness property (3.7), for real values of a, 
b, c we can always arrange (if necessary by taking b negative) that 

A < O, ql/2 > 0 (3.16) 

so the restrictions (2.35) or (2.42) can always be satisfied. 

3.2. Generalized Hard-Hexagon Model 

This is also an IRF model, so Z and Xj are again given by (3.1) and 
(3.2). Now, however, each o i takes the values 0 or 1, and 

W(a, /~,y, 8) = mZ(~+ B+V+8)/4eLaV+ MB6t -~+13-v+~ 

if af i  = f i y  = yS  = Sa = O 

= 0 otherwise (3.17) 

Here m is a trivial normalization factor, z is the activity, L and M are 
interaction coefficients, and t is a disposable parameter that cancels out of 
the partition function. The parameters z, L, M must satisfy the restriction 

z = (1 - e-L)(1 -- e -M) / ( e  L+M- e L -  e M) (3.18) 

This restriction is necessary for the star-triangle relation (2.6) to have 
nontrivial solutions and for the model to be solvable by existing methods: 
without it we have the general hard-square lattice gas with diagonal 
interactions. The triangular lattice gas (i.e., the proper hard-hexagon model) 
is the limiting case L ~ 0, M ~ - ~ .  

There are five distinct nonzero Boltzmann weights: 

w(0000) = m 

w (1000) = w (0010) = mz'/4t- '  

w(0100) = w(0001) = mzl/4t 

w(1010) = mzl/Zt-2e L 

031 = 

03 2 

033 ~-" 

034 

035 = w(0101) = mzl/2t2e ~ 

and it is useful to define a parameter 

Ah = z- , /2(1 _ zeL+M)= (032_ 034035)/032033 

(3.19) 

(3.20) 

Critical Case. This model has been solved exactly. O) It is critical 
when 

Ah2= [ � 8 9  1)]5=�89 + 5~-1 (3.21) 
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In this case we can choose t, and parameters P0, 1., v, so that 

031 = p0sin( v + 21*)/sin 21. 

% = p0sin v~  [ sin 1. sin 21.] 1/2 

033 = p0sin( 1. - v) /s in  1. 

034 = p0sin(21* - v) /s in 21, 

03s = 190sin( 1. + v)/s in 1. 

where 

(3.22) 

where 

q l / 2 =  2cos 1., q = �89 + ~/5) = 2 .6 1 8 . . .  (3.25) 

The definition (3.17) ensures that the only states which contribute to Z 
are those in which oio j = 0 for all adjacent sites i a n d j  (i.e., no two particles 
can be adjacent). We can therefore restrict the spin set ~r = { o l , . . . ,  ~,} in 
(3.2) to satisfy the restriction 

ojoj + 1 = O, j = 1 . . . . .  n (3.26) 

and similarly for ~r'. From (3.19) and (3.24), it then follows that Xj is of the 
form (2.16). The elements of Uj are given by (3.2), with w replaced by 

8 (oj_ 1, ~j+ 1)q ( - oj + oj+,- oj + oj ,)/4 (3.27) 

These matrices Uj satisfy (3.19), so the relations of Section 2 apply also to 
this model, the parameters P0,/~, v, P, x, q herein being the same of those of 
Section 2. Note that q is restricted to the value given in (3.25), whereas in 
the six-vertex and SDP models q can take any positive real value. (There is 
also a nonphysical critical case of the hard-hexagon model, corresponding 
t o  A h Z m - � 8 9  5~-), 1. = 2~r/5, q = � 8 9  = 0.382 . . . .  but I shall 
only consider the physical case.) 

1. = ( 3 . 2 3 )  

This is the parametrization of Eqs. (41) and (42) of Ref. 3, and of Eq. 
(2.12) of Ref. 8, with q, u therein replaced by 0, v. The "physical" cases are 
when 00 is positive and - / ,  < v < 1.: the weights % . . . . .  035 are then 
positive (except possibly for 032, but negating % leaves Z unchanged, so we 
can always map this to a physical case, and vice versa). 

Defining q, x, 19 by (2.41), it follows that 

031 =/9(1 + x), 032 = 19q - l / 4 x  

o33 = 19, s 4 = 0(1 + q--]/2X) (3.24) 

035 = 19(1 + ql/2x) 
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3.3. Potts Model 

For the Potts model, take ~ to be the usual square lattice, with m rows, 
n/2 columns, and N/2 sites. At each site i place a spin oi, with values 
1 . . . . .  q. The partition function is 

R N ~ e x p [  K~8(oi ,  oj)+ L ~ 6(ok, o,) ] (3.28) Z =  
L (q) (~t) j 

where the first summation inside the exponential is over all horizontal edges 
(i, j) of ~, the second is over all vertical edges (k,l), K and L are 
interaction coefficients, the outer sum is over all states of all the spins, and 
R is merely a normalization factor per edge. Normally we would take 
R = I .  

Kasteleyn and Fortuin (24) and Baxter, Kelland, and Wu (19) showed 
that Z could be written as 

Z = RN~qC(e  K -  1)r(e L -  1) s (3.29) 
a 

where the sum is over all graphs G on E, C is the number of connected 
components (including isolated sites) in G, r is the number of horizontal 
bonds, and s the number of vertical bonds. This is a dichromatic polyno- 
mial (25) and this form can be used to extend the definition of Z to 
noninteger.values of q. 

The edge transfer matrices are X 1 . . . . .  X n, as in (2.2) and (2.27). They 
can be written as 

X2j_ l = R s - ' [ ( e  c -  1)I + q'/ZU2j_,] 
(3.30) 

Xzj= Rs[ I + q-l/2(eK-- 1)U2j ] 

for 1 < j <~ n/2. Here s is a parameter that cancels out of the partition 
function, so we can choose it to suit our convenience. The matrices 
U l . . . .  , U, are qP by qP, where p = n/2. They have rows labeled by the 
spin set r = {oj . . . . .  Op}, and columns labeled by ~r'= {o~ . . . .  , o~}, and 
elements 

P 

(U2j_~),,,,,, = q-,/2 /-I* 6(o~,o~) (3.31a) 
k = l  

P 

(U2j),,,,, = q~/26(~176 / 'I  8(o~,o~) (3.31b) 
k = l  

the star * in the first product meaning that the term k = j is excluded. Thus 
U2j is a diagonal matrix; U2j_ l is not. For cyclic boundary conditions, j = 
1 . . . . .  p in (3.31), and the index j  + 1 is to be interpreted modulo p. For 
free boundary conditions, n is odd, the definition of p is changed to 
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p = ( n +  1)/2, (3.31a) holds for j - - - 1 , . . . , p ,  and (3.31b) for j =  
1 . . . . .  p - 1 .  

In general the Potts model has not been solved exactly: exceptions are 
the q = 2 case, which is the Ising model; the trivial case q = 1; and the 
self-dual case, which I discuss in this paper. 

Self-Dual Case (The SDP Model). The matrices U 1 , . . . ,  U~ satisfy 
the relations (2.19) (they are the third realization found in this section of 
such matrices). We can put (3.30) into the form (2.16) only if 

in which case 

(e K -  1)(e L -  1) = q (3.32) 

O = R(  e c -  1) '/2 (3.33) 

x = q l / 2 / ( e C -  1)= q - ' / 2 ( e X -  1) 

Equation (3.32) is the condition for the Potts model to be self-dual. (26) 
In fact, duality corresponds to simply interchanging odd and even indices 
in (3.30). 

To summarize this section: the six-vertex, critical hard-hexagon, and 
SDP models all have local transfer matrices satisfying (2.16) and (2.19). 
They therefore all satisfy the star-triangle and inversion relations (2.6), 
(2.47), and (2.50). In the next two sections I shall discuss and compare their 
partition functions per site x. 

4. THE FUNCTION ~ FOR q > 4 

4.1. Six-Vertex Model 

The exact solution of the six-vertex model, with cyclic boundary 
conditions, has been rigorously obtained (2~ for positive values of the 
weights a, b, c, using the theorems of Yang and Yang. (27) The evenness 
relations (3.7) (with d = 0) can be used to extend these to all real values of 
a, b, and c. The parameters q, X, P0, u are related to a, b, c by (3.10), (3.13), 
and (3.14). For q > 4 the parameter X is positive and u is real. There are 
three cases. 

(i) 0 < u < X: This corresponds to the ordered antiferroelectric phase, 
such as that of the F model. We have 

e - 2 n X s i n h  n u  

ln r  = lnp0 + 2 
sinh n()~ u) 

n = 1 n cosh n~ (4.1 a) 

[note that the symmetry property (2.39) is obviously satisfied]. 
(ii) u > ),: This is an ordered ferroelectrie KDP-type phase, which is 

completely frozen; x is simply equal to the numerically largest Boltzmann 



The inversion Relation Method 17 

weight b, so 
= Oosinh u/s inh 2t (4.1 b) 

(iii) u < 0: This case can be obtained from (ii) by rotating ~ through 
90 ~ : 

-- Oosinh (h - u) /s inh X (4.1 c) 

Analyticity and Periodicity of ~(u). These results have been rigor- 
ously obtained only for real values of u, but they can obviously be 
analytically continued to complex values of u. From large-X expansions, it 
seems that they then give the true partition function per site, provided that 
case (i) is taken to apply in the domain 0 < R e ( u ) <  )t; case (ii) in 
Re(u) > ~; and case (iii) in Re(u) < 0. These three domains are shown in 
Fig. la. This definition ensures that IK(u)l is continuous. 

This function ~(u) is piecewise analytic. Each of the three domains is a 
vertical strip (or half-plane). Within each domain K(u) is analytic, nonzero, 
periodic, or antiperiodic of period ~ri; and can be analytically continued 
across the domain boundary. It satisfies the inversion relations (2.40). As 
R e ( u ) ~  + r we see from (2.36) that K(u) grows as exp(+ u). 

Evaluation of ~(u) from the Inversion Relations. Conversely, these 
properties are actually sufficient to define ~(u). Because K(u) is analytic, 
nonzero, and (anti-)periodic, its logarithm must have a generalized Fourier 
expansion: 

oo 

ln~(u) = Lu + ~ c.e 2"" (4.2) 
t / =  - -00  

_.iiP 
did ( i )  

Fig. 1. 

u - p l a n e  

k+i r r  

in" ~+~-- 

D 

( i i )  

( i i )  

c 

QC 
D 

x - p l a n e  

( i )  

( a )  ( b )  

The zero-field six-vertex model with q > 4, i.e., IAI > 1. Domains  of analyticity of ~ as 
a function of u, and of x [Eqs. (4.1)-(4.8)]. 
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where L is an integer. This expansion must be convergent inside the 
appropriate domain, and slightly beyond it. 

The inversion points u = 0 and u---)k both lie on the boundary of 
domain (i), so x(u) therein must satisfy both (2.40a) and (2.40b). Taking 
logarithms of these equations and substituting the expansion (4.2), we can 
solve for the coefficients L,  Co, C+_~ . . . . .  thereby obtaining the result 
(4.1a). 

For  domain (ii), only the inversion point u = ;k lies on the boundary, so 
we can only use (2.40b). However, from the behavior when R e ( u ) ~  oe we 
see that L = 1 and c n = 0 for n >/ 1. The relation (2.40b) is then sufficient to 
determine e0, c_ 1 . . . . .  and hence to verify the result (4.1b) for ~(u). 

Similarly, the result for domain (iii) can be obtained from the relation 
(2.40a) appropriate to the inversion point u = 0, together with the known 
behavior when R e ( u ) ~  - m. 

The known results for the zero-field six-vertex model can thus be 
rederived by this simple method. To make this method rigorous, we should 
of course properly establish the analyticity properties that we use. Progress 
has been made in this direction by Shankar. (v) 

At first sight we do not seem to have used the star-triangle relation 
(2.6) or (2.49). However, Shankar's work makes it clear that this plays a 
vital role in establishing that ~ can be analytically continued through an 
inversion point. 

Zeros of Z ( u ) .  A useful check on (4.1) is to note from (2.1) and 
(2.36) that Z ( u )  is of the form e - S U ( d o  + die  2~ + d2e 4u + �9 �9 . + due2NU), 

where d o . . . . .  d s are constants. It can therefore be written in the form 

N 

Z ( u )  = C ~ sinh(u - uj) (4.3) 
j : l  

where C is a constant and u 1 . . . . .  u u are the zeros of Z ( u ) .  

Take N to be large, but finite. From (2.4) and (4.1), Z ( u )  is nonzero 
inside the domains (i), (ii), (iii). The zeros u 1 . . . . .  u N can therefore lie only 
on the boundaries, i.e., the vertical lines R e ( u ) =  0 and ?~. They can be 
chosen to lie on the line segments O B  and CD,  and it seems likely that in 
the limit of N large they form a dense distribution thereon. 

On OB,  set u = iy and let N g ( y ) d y  be the number of zeros between y 
and y + dy. Taking the logarithm of (4.3), using (2.4) and the rotation 
symmetry Z ( u )  = Z ( X  - u), it follows that 

lnx(u)  = ~ + f0'~ln[sinh(u - iy)sinh(~ - u - iy)] g ( y ) d y  (4.4) 

for all values of u, where 7 is a constant. 
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We can evaluate g(y) by differentiating (4.4), letting R e ( u ) o  0 § and 
0- ,  and taking the difference between these limits. This gives 

d In [ xi(u)/xlii(u)] (4.5) g(-- iu) = (2rr)-I ~uu 

where /r is defined by (4.14), Kiii(U ) by (4.1c). Thus 

g(Y) = (2~r)- I( l + 2 k n  = 1 e-~%~176 nX (4.6) 

for 0 < y < ~r. This function g(y) is positive, as it must be, and 

1 (4.7) long(y) dy= 
in agreement with the fact that N/2 of the zeros Ul,. . . ,  u N must be on 
OB, the other N/2 on CD, 

We can evaluate 7 by using the limiting form of x(u) for IRe(u)] large, 
and hence write (4.4) as 

[ p~eXsinh(u - iy)sinh(u + iy - ?t) ] 
In x (u) --- s g(y) dy (4.8) 

sinh 2 ?~ 

The three results (4.1) then all follow from this single expression (4.8). 

x a s  a function of x. For the purpose of comparing between the 
q > 4 and q < 4 cases, it can be useful to change from u to the original 
variable x. Figure la then translates to lb: domains (i) and (ii) are 
separated by the straight line DQC, i.e., Re(x) = - qt/2/2; (i) and (iii) are 
separated by the circle OPB, i.e., Re(x -1) = - q l / 2 / 2 .  Regarding O as a 
constant, it is evident from (2.1), (2.2), and (2.16) that Z is a polynomial in 
x of degree N. When N becomes large, half its zeros lie on DQC, the other 
half on OPB. 

The function x(x) satisfies the inversion relations (2.32) and (2.33) in 
the neighborhood of the inversion points x- - -0  and x = oe, respectively. 
From (2.34) the right-hand side of (4.1b) is (for constant O) a single-valued 
function of x: since this function satisfies (2.33), it must do so for all values 
of x. In particular, it must satisfy (2.33) in the neighborhood of the virtual 
inversion point x = - q l / 2 / 2 ,  i.e., the point Q in Fig. lb. For case (ii) we 
could therefore have evaluated ~ by the matrix inversion trick, using the 
point Q instead of x = m. 

Similar considerations apply to ease (iii) [use (2.32) near P instead of 
0], and to (i) (use P, Q instead of 0, ~ ) ,  except that in case (i) the 
right-hand side of (4. la) is a two-valued function of x. However, the values 
differ only in sign, and the only resulting modification is to negate the 
right-hand side of (2.32) and (2.33). 
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4.2. SDP Model 

All the previous remarks of this section apply to the six-vertex model. 
The critical hard-hexagon model has q < 4, so does not fall into this 
regime. Provided boundary conditions do not matter, the Temperley-Lieb 
equivalence says that the SDP model should have the same value of x as 
the six-vertex model. This certainly appears to be true (from large-q 
expansions) for the physical case, when 0 < x < oo and 0 < u < ~. More 
generally, it appears to be true throughout domain (i) in Fig. 1. It is not 
clear that it is true inside domains (ii) and (iii): indeed there are objections 
to applying the frozen KDP six-vertex states to the Potts model. They 
correspond to all arrows pointing the same way, say generally upward. 
When one obtains the Temperley-Lieb equivalence graphically for a finite 
lattice, one uses boundary conditions that prohibit this arrow configura- 
tion. (19) Looked at in a rather more general way, from (2.1), (2.2), (2.36), 
and (4.1c) it is apparent that the case (iii) solution corresponds to using a 
subspace in which U1 . . . . .  U, = 0. The six-vertex representation (3.!2) 
has such a trivial subspace, but the Potts model one in (3.31) does not. In 
any case, such a subspace cannot contribute to Zf, as defined by (2.26) and 
(2.24), though it can and does contribute to the six-vertex partition function 
when cyclic boundary conditions are used. 

It seems that boundary conditions are significant in cases (ii) and (iii). 
Admittedly the SDP model is then unphysical in that it has nonpositive 
Boltzmann weights, but it would still be interesting to obtain g as a function 
of u throughout the whole complex plane. I have not been able to do this, 
but in the next section I shall show that a similar problem arises for 
0 < q < 4. One then has an excellent guide, namely, the q = 2 Ising case, 
and can see how to evaluate x in a plausible manner by appropriate use of 
the matrix inversion technique, provided that 1 < q < 4. 

5. THE FUNCTION ~ FOR q < 4 

5.1. Six-Vertex Model 

For q < 4 we use the parameters/~, 0o, v, which are related to q, p, and 
x by (2.41). They are also related to the six-vertex weights a, b, c by (3.15), 
and from (3.13) the condition 0 < q < 4 implies that IAI < 1. In this case 
the six-vertex model corresponds to a critical eight-vertex model. If a, b, e 
are real, then we can choose /~, v to be real, satisfying (2.42), and the 
six-vertex results (23) are as follows. 

(i) 0 <  v <  tz: 

f ;  coshQr - 2/t)t sinhvt sinh(/z - v)t 
lnx = lnp o + oQ t sinhcrt cosh ~t dt (5.1a) 
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(ii) / ~ < v < ~ :  

/_~ cosh(Tr - 2#)t  sinh(~r - v)t  sinh(v - / ~ ) t  
ln~ -- lno0 + ~ t~--~--~c--0-s-h(-~: ~-~ at (5.1b) 

These equations are true for v real. Guided by the q > 4 regime, and 
by the requirement that [K(v)[ be continuous, it seems reasonable to 
suppose that they are also true for complex values of v, provided that case 
(i) is taken to apply in the domain 0 < Re (v )< /~ ;  and case (ii) in 
/~ < Re(v) < 7r. These two domains are shown in Fig. 2a, and the corre- 
sponding domains in the complex x plane are shown in Fig. 2b. As for 
q > 4, we see that the domain boundaries lie on the lines Re(x  -+l) = 
- ql /2/2,  but now they occupy only part of these lines. 

This function In ~(v) is analytic in each of the vertical strips (i) and (ii) 
in Fig. la, and can be analytically continued across the boundaries. It 
satisfies the inversion relations (2.47), and from (2.43) we see that as 
Im(v)--> _ ~ ,  x(v) grows as exp(-T-iv). 

These properties actually define x(v), just as the corresponding proper- 
ties for q > 4 define x(u). The analyticity and growth rate properties imply 
that d21n ~(v ) /dv  2 is Fourier integrable inside each domain, i.e., 

d21n x (v) 
- f f ~  c(t)e2~tdt (5.2) 

dv 2 

where c(t) is analytic in some strip about the real t axis, and the integral 
converges for v inside the domain, and just beyond it. 

Fig. 2. 

P 

(ii) 

Q 
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F~ .... 

(i) 

v-plane x -p l ane  

(~ l )  ( b )  

The  zero-field six-vertex mode l  with 0 < q < 4, i.e., IAI < 1. D o m a i n s  of analyt ic i ty  of 
x as a func t ion  of v, and  of x [Eqs. (5.1)-(5.8)]. 
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The  inversion points v = 0 and v =/~ both  lie on the boundary  of 
domain  (i), so ~(v) therein must  satisfy both  (2.47a) and (2.47b). Taking 
logarithms of these equations, differentiating twice, substituting the form 
(5.2) and inverting the Fourier  integral, we obtain the equations 

c(t) + c( - t) = - 4t cosh(~z - 2/~)t /s inh 7rt 
(5.3) 

c( t) + e-a~tc(-  t) = - 4te-  Z'tcosh(~r - 2/~)t /s inh ~rt 

These can immediately be solved for c(t). Substituting the result into (5.2), 
integrating twice [the constants of integration can themselves be obta ined 
from (2.47)] and rearranging, we obtain (5.1a). 

For  case (ii), we note from (2.43) that  Xj(v - 7r) = - Xj(v), so v on the 
left-hand side of (2.50) can be replaced by v - ~r. This means that  v = ~ is 
also an inversion point  (Xj is there proport ional  to the identity matrix) and 
that 

x (v  - z,)x(~r - v) = p02sin(/z - v)sin(/~ + v)/sin21~ (5.4) 

The inversion points v = / z  and v = 7r lie on the boundary  of domain  (ii), so 
we can use the corresponding equations (2.47b) and (5.4). Substituting (5.2) 
and proceeding similarly to case (i), we obtain the result (5.1b). 

As for the q > 4 regime, it is helpful to look at the distribution of the 
zeros of the part i t ion function. The equation (4.3) now becomes 

N 

Z(v)  = C I-[ sin(v - vj) (5.5) 
j = l  

where we can choose each vj so that 0 < R e ( v j ) <  ~r. The  results (5.1), 
extended to the domains  (i) and (ii) of Fig. 2, imply for N large that 
v l , . . . ,  v~r lie on the lines R e ( v ) =  0 and R e ( v ) = / ~ .  On the imaginary 
axis, set v = iy and let Ng(y)dy be the number  of zeros between y and 
y + dy. Proceeding as in (4.4)-(4.8), we obtain 

oo cos2yt  cosh(tr  - 2/~)t 1 F ~  

g(Y) - -  - ~  J-o~ -c-osh-~ic~sh(~r T] - ~  dt (5.6) 

f f  1 (5.7) oo g(Y) dy = 

[ pgsin(v - iy)sin( t~ - v - iY) 
in = f f  ln g(y) dy (5.8) 

Equat ion (5.7) implies that N / 2  of the zeros lie on the imaginary v axis, the 
other  N / 2  on the vertical line Re(v) = ~t. 

Regarding x as a funct ion of x (holding p fixed), we obtain the picture 
in Fig. 2b. The  domains (i) and (ii) are separated by  the path  CLOMD, 
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made up of segments of the straight line Re(x) = - q l / 2 / 2 ,  and the circle 
R e ( x - l ) = - q l / 2 / 2 .  The v i r tua l  inversion points x = - 2 q  -1/2 and 
- q l / 2 / 2  (points P and Q in the figure) lie inside the domain (i), and the 
inversion relations (2.32) and (2.33) are not satisfied in their vicinity. 

5.2. S D P M o d e l f o r  l < q < 4  

The self-dual Potts model has, for arbitrary q, been solved only by 
using the Temperley-Lieb equivalence to a six-vertex model. An important 
exception is the Ising model case q = 2, which has been solved (14'2s) for all 
values of K and L in (3.28). Regard R therein as a constant, and take ~ to 
be the square lattice with N /2  sites, with cyclic (i.e., toroidal) boundary 
conditions, and an even number of rows and columns. By reversing spins 
on alternate rows (or columns), and noting that there must be an even 
number of unlike spin pairs in each column (or row), one can readily 
establish for q = 2 that 

Z(eK, e L) = eNK/2Z(e -K, - e  L) = eNL/2Z(--eK, e -L) (5.9) 

These symmetry relations do not affect the self-duality condition 
(3.32), so we can check whether they are satisfied by the six-vertex solution 
(5.1). They are not, so we cannot use the Temperley-Lieb equivalence for 
all values of x or v. 

Instead we can of course directly use Onsager's result (14'28) for the 
Ising model: 

ln~ = ln(21/ZR) + I ( K +  L) 

+ ~ f f _ ~ l n ( c o s h K c o s h L - s i n h K c o s a -  s inhLcos ,8)dadfi 
4(2qr) 2 - 

(5.10) 

This is true (with appropriate choices of the branch of the logarithm 
function) for all values of K and L, real or complex. When the self-duality 
relation (3.32) (which for 1 < q ~< 4 is the criticality condition) is satisfied, 
then, using (3.33) and (2.41), we find that there are four cases to consider, 
corresponding to the four domains in Fig. 3. [The boundary lines OLPM 
and CLMD correspond to sinh K and sinh L being pure imaginary, which is 
when the argument of the logarithm in (5.2) vanishes for real nonzero 
values of a and fl.] 

In domain (i) we find that (5.10) is indeed the same as (5.1a), with 
/, = rr/4, but in the other domains it is not the same as the corresponding 
six-vertex result (5.1b). The Temperley-Lieb equivalence therefore defi- 
nitely fails in these domains for q = 2, and presumably for all q < 4, just as 
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Fig. 3. The self-dual Potts (SDP) model with 0 < q < 4. Domains of analyticity of ~ as a 
function of v, and of x [Eqs. (5.12)-(5.15)1. 

it appears  to fail for q > 4. These failures must  be  due to the six-vertex 
model  being sensitive to b o u n d a r y  conditions.  

Of course, domains  (ii)-(iv) are unphysical ,  in that  the Potts model  
Bol tzmann  weights are not  all positive. Even so, we need to consider such 
cases to obta in  a full unders tanding  of ~ as a funct ion of x or v. Further ,  
we shall find that  they correspond to physical  cases of the ha rd -hexagon  
model.  

For tuna te ly  the q = 2 case also suggests how to obta in  In ~ for  the SDP 
mode l  for  other  values of q: its solution is analyt ic  within each of the 
domains  (i)-(iv) and  can be analytically cont inued across the doma in  
boundar ies ;  the inversion relations (2.32) and  (2.33) are satisfied not  only at  
the points  x = 0 and  x = o% but  also at the virtual inversion points  P and  
Q, respectively. In  terms of the var iable  v in (2.41), this means  that  we have  
the addit ional  inversion relations 

K(/3)Kac('7/" - -  L~)  ---~ -p02sin(/~ - v)sin(Ix + v)/sin2bt (5.11a) 

x(v)x,c(~r + 2/~ - v) --- - O02sinv sin(Z/* - v)/sin2/~ (5.11b) 

Just  as (2.47a) corresponds  to (2.50), so does (5.11a) cor respond to 
(2.50) after using the fact  tha t  Xj(v) is antiperiodie of per iod ~r. Equa t ion  
(5.11b) follows f rom (5.11a) and  the rotat ion symmet ry  (2.46). I t  therefore 
seems reasonable  to suppose that  they are true for all real values of q within 
some ne ighborhood  of q = 2. We  can then use these, together  with analyt ic-  
ity and  the original inversion relations (2.47) and  (5.4), to obta in  s(v) .  
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The calculation proceeds in the way outl ined after  (5.2), only now we 
can use the inversion points v = 0 and/~ for domain  (i), v =/~ and �89 for 

(ii), v = �89 ~ and /z  + �89 ~r for  (iii), and v =/~  + �89 ~7 and ~z for (iv). Thus in (i) 
we use the equations (2.47a) and (2.47b), in (ii) we use (2.47b) and (5. l la), 
in (iii) we use (5.1 la)  and (5.1 lb), and in (iv) we use (5.1 lb)  and (5.4). The  
results are as follows: 

(i) 0 < Re(v)  < /z :  

f_~ cosh(~z - 2/~)t s inhvt  s inh( / t  - v)t 
lnx  = ln00 + dt (5.12a) 

o~ t sinh ~rt cosh/~t 

(ii) /z < Re(v)  <~qr: 

_,o s inh(v - i~)te~(#,v,t) 
lnx  = lnoo + ~ ~ T s i n - - f f ( ~ - - -  ~ dt (5.12b) 

where 

q,( it, v, t) = sinh(~r - t~)t sinh(~r - 2/z - v)t 

+ sinh/~t s inh(v - 2/~)t (5.12c) 

(iii) �89 ~r < Re(v)  < /~  + �89 ~r: 

lnx = inpo + f ~  ~P( t~,v,t) 
2ts inh~rtcosh i~t dt (5.12d) 

where 

if(/~, v, t) = cosh/z t  cosh(~r - 2/~)t - cosh 2/zt cosh (2v - 7r - #)t  (5.12e) 

(iv) /z + �89 < Re(v)  < ~r: 

sinh(~r - v)t q~( #,~r + ~ - v,t) 
lnx  = lnp0 + f~-o~ -t-si~_h'-~-s~ Z ~ - ~  dt (5.12f) 

The  results for  any other value of v can be obta ined f rom the 
periodicity proper ty  x(v) = x(v + ~r). One can easily see that the symmetry  
relation (2.46) is satisfied, and can verify that Ix(v)] is cont inuous across the 
domain  boundaries.  There  is some ambiguity in the choice of signs in 
(5.11), corresponding to the fact that Xy(v) is antiperiodic in v, while we 
would normally choose the logari thm in (2.4) to ensure that x(v) is periodic. 
I have chosen the signs to ensure that x(v) is positive real for real values 
of  t). 

The  zeros v t . . . . .  v N in (5.5) now lie on the lines Re(v)  = 0, /z, �89 ~r, 
and ~t + �89 As before, let Ng(y)dy be the number  of zeros on the 
imaginary axis, between iy and i(y + dy). Similarly, let Nh(y)dy be 
the n u m b e r  on the vert ical  line R e ( v ) =  �89 be tween �89 + iy and  
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�89 + i(y + dy). Then  f rom (5.12) it follows that  

cos2yt  sinh(~r - 3/~)t 

~r cos 2yt sinh ~tt 
h(y) = 2-~ f~oo cosla -ff~ln~(~ ~ 2t~)t dt 

[ p~sin(v - '  iy)sin( I~ - v - iy) 
In x(v) = (o~a_o~ In 

sin2~ 

+ ( '~  ln[  P~ - �89 - / y ) s i n (  

�9 1 - ~  [ sin2/, 

g(y) ay 

# - v + �89 jh(y) 

(5.13) 

dy 

(5.14) 
this last equat ion being true throughout  the complex v plane. 

F rom  (5.13), 

;7 g ( y ) d y  = �89 - 3~)/(~r - 2/~) 

(5.15) 
fj_~ h(y)dy = �89 - 2/x) 

so there are �89 - 3/0/(~r - 2~) zeros on the imaginary v axis, and on 
the line R e ( v ) = / ~ .  There  are also �89 2/0 zeros on the line 
Re(v)  = �89 7r, and on Re(v)  =/~ + �89 ~r. Altogether there are N zeros, as is 
required by (5.5). In the x plane the first two sets of zeros lie on the lines 
LOM and LCDM, while the second two sets lie on LPM and LQM. 

For  the Ising case we have q = 2 and/~  = 7r/4. There  are then N/4 
zeros on each line, and (5.14) is indeed equivalent to the critical case of 
(5.10). By using the matrix inversion method,  we have generalized this 
result to o ther  values of q less than 4. 

This generalization makes perfectly good sense for 1 < q < 4, since 
then ~r/3 >/~  > 0 and g(y) and h(y) are positive, as they must  be. For  
q = 4 ( ~t = 0), all the zeros lie on the lines Re(v)  = 0,/ t .  As q decreases, the 
number  of zeros on these lines decreases, while zeros appear  instead on the 
lines R e ( v ) =  �89 and /~ + �89 This process continues as q approaches  1, 
until all the zeros lie on the latter pair of lines. 

5.3. S D P M o d e l f o r 0 < q <  1 

The  distribution functions g(y) and h(y) must be positive, so the 
results (5.12)-(5.15) cannot  be true for 0 < q < 1, i.e., 7 / 2  > / z  > ~r/3. For  
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q = 1, i.e., # = ~r/3, the Potts model is trivial. All spins have value 1, and 
from (3.28), using (3.31) and (2.41), 

K = Re (K+L)/2= p(1 + x) = p0sin(/~ + v)/sin/L (5.16) 

for all complex values of x and v. 
The equations (5.12) correctly give this result in domains (i), (ii), and 

(iv), but are incorrect in (iii). Indeed they must fail somewhere, since they 
imply that Z has zeros on the contour LPMQL in Fig. 3b, while from (5.16) 
all its zeros coalesce at x = - 1, which point lies inside the contour. Thus in 
domain (iii) the limits N--> co and q ~ 1 cannot be interchanged. 

For 0 < q < 1, I have no reasonable suggestions to make for x. The 
most obvious idea seems to be to ignore the very special q = 1 case, and to 
suppose that v 1 . . . . .  v N "stick" on the lines Re(v) = �89 and/~ + �89 there 
being no zeros on Re (v )=  0 and #. This implies that InK is analytic for 
/~ - �89 ~r < Re(v) < �89 ~r, which domain is the union of (i), (ii), and (iv) (after 
allowing for periodicity of period vr in the v plane). The obvious thing to do 
then is to calculate K from the virtual inversion points v =/~ - �89 ~r and �89 ~r, 
but this implies that  the left-hand side of (5.11a) has no zeros in the 
combined domain, while the right-hand side clearly vanishes at v =/~. 

Another idea is to maintain that (5.12a) should still be valid, but 
should extend throughout the combined domain, while (5.12d) should still 
be valid inside (iii). Unfortunately this means that Ix(v)[ is discontinuous at 
Re(v) = �89 and/z + �89 Still another idea is to apply the six-vertex result 
(5.1) throughout the complex plane, but this implies that the zeros all jump 
back onto the lines Re(v) = 0 and/z, which seems unreasonable. 

The SDP model for 0 < q < 1 thus remains unsolved, at least outside 
domain (i). This includes the real antiferromagnetic case. Wu (1~ [in his Eq. 
(5.28)] has remarked that this case presents a problem in that it is not a 
transition point, whereas the corresponding six-vertex model (obtained by 
using the Temperley-Lieb equivalence) is critical. 

5.4. Critical Hard-Hexagon Model 

This model is defined in (3.17)-(3.23). It has been solved exactly by 
the matrix inversion relations, (3) and recently by more conventional trans- 
fer matrix methods. (8) Define 

r ( v )  = = po  

then the solution is 
(i) 0 < Re(v) </~: 

sin(/z + v)sin(2/~ - v) 

sin/~ sin(2# + v) 

= r ( v )  

(5.17) 

(5.18a) 
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(ii) /z < Re(v) <�89 

x = r ( v ) s i n ( 5 v / 3 ) / s i n  [5(2g - v ) / 3 ]  (5.18b) 

(iii) �89 < Re(v) </~ + �89 

x = - r ( v ) c o t ( 5 v / 2 )  (5.18c) 

(iv) /~ + �89 ~r < Re(v) < ~r: 

= r ( v ) s i n ( 5 v / 3 ) / s i n  [5(2/x + v ) / 3 ]  (5.18d) 

[Equation (5.18a) corresponds to (43b) of Ref. 3, u therein being replaced 
by our v; (5.18b) and (5.18d) correspond to (43a); (5.18c) to the critical 
case of Eq. (6.28c) of the next section.] 

Note from (3.23) that for this model /~ = ~r/5. If we substitute this 
value into (5.12), then we obtain exactly the equations (5.18). Thus the 
critical hard-hexagon model is equivalent to the corresponding six-vertex 
model only in domain (i), but is always equivalent to the self-dual Potts 

t model with q given by (3.25), i.e., q ~(3 + ~- )  = 2.618 . . . .  
The proper hard-hexagon model (i.e., the triangular lattice gas with 

nearest-neighbor exclusion) is obtained by setting v = 2/z, so lies in domain 
(ii). This is therefore equivalent [in the weak sense of having the same ~, 
and Xfs satisfying (2.16)-(2.19)] to the Potts model, but  not to the six- 
vertex model. 

6. MODELS INVOLVING ELLIPTIC FUNCTIONS 

The zero-field eight-vertex model, and the noncritical hard-hexagon 
model, also have local transfer matrices which permit nontrivial solutions 
of the star-triangle relation (2.6). However, the solutions no longer have 
the linearity property (2A0), and I know of no analog of the algebraic 
relations (2.16) and (2.19). 

Even so, the star-triangle relation can still be written more explicitly as 
(2.49), the symmetry relation (2.39) is valid, and the inversion relation 
(2.50) has a straightforward generalization. They can therefore be used (6'7) 

to calculate x, as I shall indicate here. It turns out that there are two 
possibilities, just as in Section 5 we found the results (5.1) and (5.12) for the 
six-vertex and SDP models, respectively. 

6.1. Eight-Vertex Model 

This model is defined in Section 3.1. Without loss of generality we can 
take s = t = 1 in (3.6), leaving four independent parameters a, b, c, d. We 
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can introduce four related parameters w ~ , . . . ,  w 4 by 

w I = a -  b, w 2 = a + b 
(6.1) 

w 3 = c + d ,  w 4 = c - d  

The partition function per site satisfies (3.7), (3.8), and other symmetry 
and duality properties. (12) These are particularly simple if we think of tc as a 
function of w l , . . . ,  w4, for then they can all be combined into the single 
equation (~) 

/r w2 ' w3 ' w4 ) =/r  ~ wi ' --i- wj, ~- Wk, +_ W,) (6.2) 

for independent choices of the • signs, and for all permutations (i, j ,  k, l) 
of (1,2, 3, 4). Thus nr is unaltered by negating or interchanging any of the 
W'S. 

Let Ol(u, q) . . . . .  04(u, q) be the usual elliptic theta functions of half- 
period ~r: 

O,(u,q)  = 2 q ' / % i n u  f i  (1 - q2"e2")(1 - q2"e-2i")(1 - q2,) 
n = l  

O2(u,q) = O,(u + �89 (6.3) 
04(u,q ) = f i  (1 -- q2"-le2iU)(1 -- q 2 n - l e - 2 i u ) ( 1 -  q2n) 

n = l  

O (u,q) = o4( .  + 

Here u is known as the "argument" of these functions, q as the "nome," 
Iql < 1. 

Notation. In this section q (without a suffix) will always be an elliptic 
nome. We will regain contact with Sections 2-5 in the limits q ~ 0 and 
q 2 ~  + 1 (when the elliptic functions reduce to trigonometric functions): I 
shall hereinafter use the symbol qp to denote the q of those previous 
sections. 

It is also useful to define 

4,~(u,q) = - iO~(iu ,  q), (pj(u,q) = Oj(iu, q), j = 2,3,4 (6.4) 

These functions are real, @y bearing a similar relationship to 0y as sinh u 
does to sin u. 

We can now define four parameters P0, q, X, u by 

+ j ( ~ X -  u,q) 
wy = p o  epj(th, q) , j =  1 . . . . .  4 (6.5) 

and can regard x as a function of P0, q, ~, u. More particularly, let us 
regard Po, q, ~ as fixed and u as a variable. [When q = O, then d = 0 and we 
regain the six-vertex parametrization (3.14).] 
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Replacing u by X -  u merely negates w L, so we regain the rotation 
symmetry (2.39). We can also verify that (2.49) and (2.50) are satisfied, 
provided only that the function sinh u therein is replaced by qb(u, q). Thus 
we also expect the inversion relations (2.40) to be valid, subject to this 
substitution, i.e., 

~(u)~%~(- u) = O2~,(k - u ) ~ ( k  + u)/O~(~) (6.6a) 

x(U)~ac(2k- u ) =  p2~l(u)~l(2k-  u)/q,2(~) (6.6b) 

writing q,j(u, q) simply as ~y(u). 
Incrementing u in (6.5) by i~r leaves w 3 and w 4 unchanged, while 

negating w I and w 2. From (6.2), this leaves ~ unchanged. Incrementing u by 
lnq multiplies each wj by -+-q-leZ"-a. Thus ~ satisfies the two quasiperiod- 
icity relations 

~(u) = ~(u + i~r) (6.7a) 

= qeX-Z"K(u - l n q )  (6.7b) 

Incrementing h by i~r (or lnq) rearranges w I . . . . .  w4 and multiplies 
them by factors which differ only in sign, so there are similar periodicity 
relations for ~ as a function of k. We can therefore, without loss of 
generality, restrict u and k to be complex numbers with real parts between 
0 and l n l l / q  I. Define a function S(w, y, p )by  

(1 - w")(1 -- y "w-n ) (y  n +y-"p")  
S(w, y, p) (6.8) 

n(1 -P~ +Y") 
for Ipl < ly[ < Iwl < 1. Then the solution ~v) of the eight-vertex model is 

(i) 0 < Re(u) < Re(h) < ln l l /q l :  

In ~ = In 190 + S (e - 2,, e - 2x, q2) (6.9a) 

(ii) 0 < Re(h) < Re(u) < lnll/ql: 
InK = lno0 + u - k + S(e2X-2U, qZe2X, q z) (6,9b) 

The solution in case (i) satisfies the two inversion relations (6.6), and 
can be obtained from them by using the properties that In K(u) is analytic in 
the vertical strip 0 < Re(u) < Re(h), and is periodic of period ~ri. [These 
properties imply that In ~ has a Fourier series in integer powers of e2U: the 
coefficients can then be obtained ~6'7) from (6.6).] 

Similarly, the solution in ease (ii) is given by (6.6b) and 

~(u)x~c(2z - u) = o2q-2e-2aC&($ + k - u)~,(k + u - r)/q~(~k) (6.10) 

where 
q = e -~ (6.11) 

This inversion relation (6.10) is a consequence of (6.6a) and (6.7). 
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The partition function Z is an entire function of u, and has the same 
periodicity properties (even for N finite) as xN(u). From (6.7) and basic 
complex variable theory it follows that 

N 
Z(u) = C ]-I qh( u - uj) (6.12) 

j = l  

where C and u l . . . . .  u u are constants, 0 < Im(uj) < 7r, 

N 
~] uj= �89 + imTr (6.13) 

j = l  

where m is an integer. Assuming as with (4.3) that u l , . . . ,  uN tend to dense 
distributions on the lines R e ( u ) =  0 and Re(h), and that Ng(y)dy is the 
number between iy and i(y + dy), we find that 

g(y) = (2~r) - t  1 + 4 =1 (1 + e-2"X)(e -2n~ + q2,) (6.14) 

~ [ p~q~l(u- ~)~l(u + i y -  ~) ~ 
lnK(u) =f0  In g(y)dy (6.15) 

These results satisfy the consistency condition 

fo~g(y)dy= �89 (6.16) 

implying that there are indeed N uj's, half of them lying on the imaginary 
axis, the other half on the line Re(u - ~) = 0. 

From now on let us take ~ to be real and positive. Then the eight- 
vertex results (6.9)-(6.16) are very reminiscent of the qp > 4 (i.e., I~] > 1) 
results (4.1)-(4.8) of the zero-field six-vertex model. In fact they reduce to 
them in the limit when q ~ 0, P0, u, ~ being held fixed. 

From (6.3)-(6.5), negating q merely interchanges w3 and w 4, so x must 
be an even function of q, as is evident from (6.9). It is really q2, rather than 
q, that enters the equations. 

The L|m|ts  q 2 ~  1 and  - 1 .  Let us take q2 to be real, between - 1  
and 1, and consider the limits q 2 ~  1 and q 2 ~ _  1. We can handle the 
former case by using the "conjugate nome" identities: 

~?j(u,e-'r)=(~)l/2eU2/'~Oj,(~,e -~2/T ) (6.17) 

where as j runs from 1 to 4, j '  successively takes the values 1, 4, 3, 2. Set 
q =  e -~ and make these substitutions in (6.5). Let ~-~0, keeping the 
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quantities 

05= ooexp[- u ) / , ]  

= r ~ X / r ,  v = ~ r u / ' r  

fixed. Then by using (6.3) we obtain 

sin(�89 t* - v) cos(�89 t* - v) 
- -  l 

W I  = 0 0  , W 4  - -  P 0  sin(  .) cos(k .) 
W 2 = W 3 ~--- p~) 

(6.18) 

Interchanging w 2 with w 4 and using (6.1), we therefore again have a 
six-vertex model, only now qp < 4 and the weights a, b, c are given by 
(3.15), P0 therein being replaced by PS. The results (6.9)-(6.16) reduce to the 
corresponding six-vertex results (5.1)-(5.8). In particular, cases (i) and (ii) 
in (6.9) correspond to the domains (i) and (ii) in Fig. 2a. 

Now consider instead the limit q2__> _ 1. First we set 

q = ie -~, 05= p0exp [ - u ( X -  u)/,r] 
(6.20) 

= = 

and use the identities 

= ~J( 2-71rr '~'/2eU2/.~ O,f~,_~r ( rru ,ie-~2/4.~) eOj( u, ie -~) (6.21) 

where now j '  = 1,2, 4, 3 for j = 1,2, 3, 4, respectively, and S'1 . . . .  , ~'4 = l, 
1,(1 + i)/ , /2,(1 - i)/,/-2. Then we let r, X, u ~ 0 ,  keeping p{~, /~, and v 
fixed. Again we obtain (6.19) (except that w 2 and w 4 are interchanged), so 
again we have a six-vertex model with weights given by (3.15). 

However, instead of obtaining the standard six-vertex results (5.1)- 
(5.8), we find instead that (6.9)-(6.16) become the SDP results (5.12)- 
(5.15), with their four distinct domains. 

We can see how this comes about from Fig. 4 and the periodicity 
relations (6.7). The function x(u) has periods i~r and ,r + �89 i~r. This means 
that x in domain (i) is repeated in (iii), but is shifted by �89 ~ri. Thus OC 
(or O" C") corresponds to O'C'. Similarly, domain (ii) is repeated, but 
shifted, in domain (iv). 

When we let r ~ 0, keeping t* and v fixed, we focus on a strip about 
the real axis OCPQR, of width of order r. Points such as O', C', P '  
therefore go off to infinity in the v plane, and we are left with four distinct 
domains (i) to (iv). 

We can see what this means in terms of the zeros ul . . . . .  u N of the 
partition function. Half of these lie on the line OP'O", half on CQ'C". As 
r + 0 they cluster about the points O and P' ,  and C and Q'. Those in the 
vicinity of P '  and Q' disappear from direct consideration, but instead we 

(6.19) 
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irr:i  2' . . . . . . . . . . . . .  

pI  
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Fig. 4. The zero-field eight-vertex model with pure imaginary nome q = ie  - T  [Eqs. (6.7)- 
(6.16) and (6.20)]. The broken lines outline two equivalent period rectangles, but they differ by 
a vertical shift of i ~ r /2 .  As a result the domains (i)-(iv) become distinct in the limit when ~,, ),, 
u o 0 ,  their ratios remaining fixed. The SDP results (5.12) are then obtained, instead of the 
six-vertex results (5.1). 

see their period repeats at P and Q. The function g in (5.13) gives the 
distribution of zeros near O and C; h gives it near P and Q. 

We can also see how it comes about that x(v) satisfies the inversion 
relations (5.11) in the neighborhood of the virtual inversion points P and 
Q: this is just a consequence of the appropriate relations about the true 
inversion points O' and C', together with the fact that r(u) is analytic in 
each vertical strip, and is periodic of period ~ri. For instance, (6.10) applies 
to the domain (ii) and domain (iii) forms of ~r except that r therein is to be 
replaced by r + �89 ~ri. Each of these functions is periodic (or antiperiodic) 
of period ~ri, so we can in turn replace Xac(2r + i~r- u) in (6.10) by 
+ Xac(2~" -- U). We then have an inversion relation about the point P. 

The restriction 0 < ~ < l n l l / q  t implies from (6.20) that 0 </L < ~r/2, 
which is the interval considered in Section 5. We see that our results must 
fail in the limit q 2 ~  _ 1 when 7r/3 </~ < ~r/2, since then the distribution 
function g(y) in (5.13) is negative. In any case, we should obtain the 
Lieb-Sutherland results (2~ for the six-vertex model, not the correspond- 
ing SDP results. 

The resolution of this paradox lies in the fact that the eight-vertex 
model results (6.9) have not been obtained with the same degree of rigor 
that has been applied to the Ising and six-vertex models. All the methods 
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used (f'6'29) -have consisted of obtaining equations for x, and then finding 
solutions of these equations. [This is quite different from the Ising model, 
where one can directly write down tractable expressions for Z for a finite 
lattice, and then explicitly take the thermodynamic limit (2.4).] Various 
limits have been interchanged without justification, but more importantly 
the solution has been chosen to be the one that is correct for small [ql and 
large ?,. This means that (6.9) is undoubtedly exact for sufficiently small I ql, 
but it is conceivable that as Iql is increased there may come a point at 
which one should change from one solution to another. [In rather the same 
way as one changes from (6.9a) to (6.9b) when u crosses h.] 

For q and h real there seems to be no reason to suppose this occurs. 
However, for q2 negative and u in domain (ii), it must occur for the 
eight-vertex model with cyclic boundary conditions; otherwise one does not 
get the proper six-vertex result in the limit q2_+ _ 1. 

Even so, it is still very interesting that (6.9) should instead give the 
SDP model results (for 0 < / ,  < ~r/3) in this limit. Presumably this solution 
corresponds to a six-vertex model with the free boundary conditions (2.26) 
appropriate to the equivalent Potts model. (!9) 

6.2. Hard-Hexagon Model 

This model is defined in (3.1), (3.2), and (3.17)-(3.20). Here I shall take 
A h to be real, and A c to be the critical value of A h given by (3.21), i.e., 
Ac = [�89 + 5q5-] -1/2 = 0.30028 . . . .  We have to distinguish the cases 

]A[ > A~ and IAI < Ac. 

IAI > Ac. In this case we use the parametrization (28a) of Ref. 3. 
Replacing x, w therein by - e-X, e2U, we can write this as 

00l = 0oe-2U~,( 2x + u)/~,(2~) 

002 = 00ear (u) / [ 0, (X)~,, (2X) ]1/2 

003 = PO~l(X - -  U)/ t~l(~k ) 
(6.22) 

004 = 0oe2%]( 2~' - u)/+,(2)~) 

o,2 = poe-2"e~,(x + u)/ee,(x) 
ah = e3Xfr162 

Here qq(u) is the function +l(U, q) defined by (6.3) and (6.4) with 

q2 = _ e -  5x (6.23) 

We regard 00 and 2~ as constants, and u as a variable. The star-triangle 
relation (2.49) is satisfied for all complex numbers u arm u'. As with the 
eight-vertex model, the inversion relation (2.50) is also satisfied, provided 
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only that the function sinhu therein is replaced by col(u, q). Furthermore, 
replacing u by X - u in (6.22) merely interchanges 0)2 with 0)3, and 034 with 
0)s [apart from factors that can be absorbed into the irrelevant variable t in 
(3.19)]. These interchanges correspond to rotating the lattice through 90 ~ , 
so again we have the symmetry property (2.39). 

It follows that x(u) must satisfy precisely the same inversion relations 
as those of the eight-vertex model, namely, (6.6). It also has the same 
periodicity properties (6.7), is analytic in the vertical strips shown in Fig. 4, 
and can be analytically continued across the strip boundaries. 

It follows that r(u)  must be the same as for the eight-vertex model, 
and indeed on substituting into (6.9) the value (6.23) of q2, we obtain 

(i) 0 < Re(u) < X: 

/r = 0)4035 e u eO2( �89 ?t -- u' e -  2X) (6.24a) 
0), ~2(�89 + u , e  -2x)  

(ii) X < Re(u) < 5)t/2: 

/~(U) 0)4605 e zx-2u ~'l(u'e-3X)ff2(�89 u'e-3X) 
= - -  (6.24b) 

0)1 ~1(2)k- u,e-3X)eO2(3X/2 - u,e -3x) 

These are precisely the regime IV and regime I results for the hard-hexagon 
model. In these cases the hard hexagon model is therefore equivalent to an 
eight-vertex model, in which qZ is negative and is related to X by (6.23). 

The critical case A h = 2 L is obtained by letting )t ~ 0, while keeping 

v = ~ru/5X (6.25) 

fixed. Using the periodicity relation (6.7), we obtain the results (5.18). We 
thus regain the equivalence discussed in Section 5 between the critical 
hard-hexagon and SDP models. 

]Ah[ < A .  Now we use the parametrization (28b) of Ref. 3, with x, w 
therein replaced by e-2X, e-2". This gives 

0)1 = o0e-"*l(  2X + u)/~l(2?Q 

0)2 = Poe - "+x /2O, (u ) / [ ,b , (~ . )q , , (2? , )  ],/2 

0)3 = Poe"d01( )t -- u ) / ep , (X)  
(6.26) 

0)4 = Ooe-"qh( 2X - u)/q~l(2X) 

0)5 = Ooe"r#l( ?t + u)/eO~(?~) 

A h = _ e3X/2[~]()t)/qh(2)t)] 5/2 

where here ~l(u) is defined by (6.3) and (6.4) with 

q2 = e -  10~. (6.27) 
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Again the star-triangle relation (2.49), the inversion relation (2.50), 
and the symmetry relation (2.39) are satisfied, provided only that sinh u is 
replaced by ~l(u, q). However, this time we do not obtain the result (6.9). 
Instead, x(u) is given by 

(i) 0 < Re(u) < ~: 

K(b/) = 604605/601 (6 .28a)  

(ii) X < Re(u) < 2�89 

(iii) 

( i v )  

K(U) = 0")4605 e 4(h-u)~3 ~bl(u 'e-3X) 
601 ~(2X - u, e-3X) 

2�89 < Re(u) < 3�89 

6040.)5 e3X/4 qbl(U -- 3~k, e-2X) = 

601 ~b4(U -- 3X, e -  2~) 

3�89 < Re(u) < 5~: 

604(d5 ea(u_sx)/3 ~1(6~ -- u, e-3X) 
= 

601 ~1 (4~-  u,e -3~') 

(6.28b) 

(6.28c) 

(6.28d) 

The apparent poles and zeros in these expressions cancel one another: for 
real u, x(u) is continuous and positive, The form (i) is the "regime III" 
result of the hard-hexagon model 3; (ii) and (iv) are the results for regimes 
VI and II; (iii) is the result for a previously unreported nonphysical ordered 
regime, in which every other site on every other row is preferentially 
occupied. 

These results also reduce to (5.18) in the critical limit, when ~ 0  
while v in (6.25) is held fixed. This means that x is continuous across the 
critical line IA[ = A c. It also means that in this limit the model is equivalent 
to an SDP model, rather than a six-vertex model. 

Even for nonzero ~, this model bears the same relationship to the 
eight-vertex model as the SDP model does to the six-vertex model. Instead 
of having two domains, as in Fig. 2a, there are four domains, as in Fig. 3a. 
Lying on the boundaries are the true inversion points u = 0, 3,, - I n  q, and 
the virtual inversion points - �89 In q, ~ - �89 In q. The corresponding inversion 
relations are satisfied and define x(u), but since these properties differ from 
those of the eight-vertex model, we obtain different answers [except in 
domain (i), corresponding to the hard-hexagon regime III]. 

6.3. "SOP-like" Eight Vertex Model 

Suppose we generalize the properties mentioned in the last paragraph, 
and simply define x(u) to satisfy the periodicity relation (6.7b), the true 
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inversion relations (6.6) and (6.10), and the virtual inversion relations 

X(U)Xac(~"- U ) =  - - o ~ q - J e - 2 U - a e ~ , ( ~ -  u)epl(~ + u)/q)~(X) (6.29a) 

x (u )xac ( z  + 2~ -- u) = --p~q-'e3a-2"ep~(u)ep](2?~ -- u)/ep~(~) (6.29b) 

where q and ~ are independent  real positive parameters,  ~- is related to q by  
(6.11), i.e., 

q = e -~ (6.30) 

and 0 < h < ~-. [All five inversion relations can be obta ined from (6.6a) by 
blindly using (anti-) periodicity and the symmetry  proper ty  (2.39), as 
though K~(u) were a single-valued function.] 

Suppose also that ~ ' ( u ) / K ( u )  is periodic of period ~i, and that  In K(u) is 
analytic in the four vertical strips between the inversion points, and can be 
analytically cont inued a short distance across the strip boundaries.  (As 
usual, K~ means  this analytic continuation.)  Then  ~ is defined by these 
properties.  Like the K of the true eight-vertex model,  considered as a 
funct ion of u and 2~ (P0 and ~" being held fixed) it satisfies the symmetry  
relation 

~(u,?,) = e"-XK(~ - - u,~- - ?~) (6.31) 

so without  loss of generality we can require that 0 < h < �89 ~-. Then  it follows 
that 

(i) 0 < Re(u)  < ?~: 

InK = lnp0 + S(e-2U, e-2X, q2) (6.32a) 

(ii) 2~ < Re(u)  <�89 

In ~: = In Po + 

n = l  

In x = In Po + 

n = t  

( u  - X)( ,r  - 3X)  

~" - 2 ~  

sinh n(  u - ~) q~(~rh/~', ~ru l"r, nT l ~r) 

n sinh nr sinh n ( r  - 2h) 

(iii) �89 < Re(u)  < ?~ + �89 

In K = In Po = u - + n = 1 n sinh m" cosh nX 

(iv) 2~ + �89 ~" < Re(u)  < ~: 

(u - 2X)(r - X) 

r - 2?~ 

sinh n(~ - u) ~[  ~ a / %  ~(X + �9 - u ) /~ ,  n ~ / ~ ]  

n sinh m- sinh n (~- - 2h) 

(6.32b) 

(6.32c) 

(6.32d) 
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Here S(w, y, p) is the function defined by (6.8); ~(/,, v, t) and @(/~, v, t) are 
the functions defined by (5.12c) and (5.12e); I (u)l is continuous across the 
domain boundaries. 

These results can be combined into the single formula (true for all 
complex numbers u): 

[ P~qh(u- iy)qq(u + iy -  X) ] 
l n K = s  ~ln ~ ~-/y~ ~ - ~  2_- 7y-~ g(y)dy 

+ s P2@'(u - �89162 - iY)@'(u + iy - X- �89 7_ ~y j . (6.33) 

where 

g(Y) = re -- 2X3--------~X + 2 =1 coshnX sinhn(~- 2X) (6.34a) 

~ [  n~ = cos2nysinhnX ] (6.34b) 
X + 2 c o s ~ - 7 ( 7 ( r  -2X) h(y) = r - 2---'-"-k =1 

These equations reduce to the SDP results (5.12)-(5.14) in the limit 
when r, X, u ~ 0, the ratios/, = ~rX/~-, v = ~ru/r remaining fixed. They also 
reduce to the IAhl < & results of the hard-hexagon model when r = 5X. The 
functions g(y), h(y) are then the distribution functions for the zeros of 
Z(u) along the lines Re(u) = 0 and Re(u) = { r, respectively. 

These are the only two realizations I know of the expressions (6.32)- 
(6.34) for ~, but it is conceivable that others may yet be found. Perhaps 
they correspond to an eight-vertex model with some particular noncyclic 
boundary conditions, just as the SDP model corresponds to such a six- 
vertex model. Alternatively, it may be possible to regard these results as 
some kind of continuation (continuous, but not analytic) of the eight-vertex 
model results across the SDP case q2= _ 1. (The hard-hexagon regime II 
and III results can be regarded as such a continuation of those for regimes 
I and IV.) 

If g(y) and h(y) continue to be distribution functions, then they must 
of course be nonnegative. [The same conclusion follows if one requires 
simply that x(u) be given by (2.4), where Z(u) is entire: any closed contour 
integral of (2~ri)-lN~'(u)/~(u) then simply counts the number of zeros 
inside the contour, so cannot be negative.] From (6.34), a necessary 
condition for this is that 

0 < X < r/3 (6.35) 

which corresponds to the fact that the SDP results (5.12) apply only for 
0 < / t  < ~-/3. 
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Note that K(u) is not strictly periodic of period ~ri within the domains 
(ii) and (iv), due to the second terms in (6.32b) and (6.32d). For arbitrary 
values of ~/~ it is hard to see how this can arise, but for the regime 
II hard-hexagon model, where ~-= 5~, these terms contribute a factor 
exp(2u/3) to K. This is a three-valued function of e 2u, and arises because 
the system has triangular ordering, every third site being preferentially 
occupied. 

7. S U M M A R Y  

We have considered the zero-field six- and eight-vertex models, the 
generalized hard hexagon model, and the self-dual Potts model. Each of 
these has local transfer matrices that satisfy the star-triangle relation (2.6). 
With an appropriate parametrization, this can be written more explicitly as 
(2.49). The matrices then satisfy the inversion relation (2.50), except that in 
general the function sinh u therein is replaced by the elliptic theta function 
~l(u, q). Using the rotation symmetry (2.39), it follows that (6'7) the partition 
function per site x(u) satisfies (2.40) or (2.47), or in general (6.6). The 
eight-vertex model is the most general of these models: it includes all 
possible choices of the various parameters (Oo, % X, and u). 

Together with some basic analyticity and periodicity properties (which 
are closely linked (v) with the star-triangle relation), these equations deter- 
mine K(u). It might therefore be thought that all the models have the same 
K. This is true for 0 < u < X (or 0 < v </~), corresponding to the ferromag- 
netic cases of the SDP model, and the "regimes III and IV" cases of the 
hard-hexagon model. However, outside this interval (antiferromagnetic or 
nonphysical SDP, and regimes I and II of hard hexagons) it is not 
necessarily so. 

The difference arises because K(u) has two possible types of analytic 
behavior. In both cases it is piecewise analytic in vertical strips, but in one 
case (the vertex models, and regimes I and IV of hard hexagons) there are 
just two such strips, while in the other ease (the SDP model and hard- 
hexagon regimes II and III) there are four strips. 

For the six-vertex, SDP and critical hard-hexagon models, we have a 
stronger equivalence. Their local transfer matrices Xj have the form (2.36), 
where the matrices Ul . . . . .  U, are independent of the variable u, and 
satisfy (2.19). This means that the matrices generate an algebra. If one 
defines the partition function Z by (2.26) (or by any other definition that 
depends only on the properties of this algebra), then Z must be the same 
(even for a finite lattice) for all three models, provided they have the same 
values of Po, ~', and u. This is a special case of the equivalence found by 
Temperley and Lieb (9) for the six-vertex and Potts models. 
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This equivalence is satisfied for the cases corresponding to 0 < u < X 
or 0 < v </z, namely, the six-vertex model with A < 0, the SDP model with 
ferromagnetic interactions, and the hard-hexagon model on the critical line 
between regimes III and IV. It is not satisfied outside this interval: the 
six-vertex model has "two-strip" behavior, while the SDP and critical 
hard-hexagon models have four strips. The source of this failure appears to 
be the sensitivity of the six-vertex model to boundary conditions. 

Even so, it is always true that the critical hard-hexagon model is 
equivalent to (i.e., has the same ~c as) the self-dual Potts model with 
qe = �89 + ~/5) = 2 .618 . . .  , and this is perhaps the most interesting result 
of this paper. As I remarked at the end of Section 1, this equivalence is true 
only at criticality, and does not affect the argument (1t,30) that the critical 
exponents of the hard-hexagon model should be those of the qe = 3 Potts 
model. 

Two immediate problems that emerge are: what is ~ for the self-dual 
Potts model with qp > 4 inside domains (ii) and (iii) of Fig. 1; and what is K 
for the antiferromagnetic self-dual Potts model with 0 < qe < 17 These 
problems may be "unphysical," but their solution would help us under- 
stand ~ as a function of u and ?,, and hence the role of the matrix inversion 
relations for these cases. It would also be interesting to check whether the 
vertex models considered by Stroganov (4) and Schultz (5) are equivalent to 
the six-vertex model, or to the SDP model. 

NOTE ADDED IN PROOF 

The critical antiferromagnetic square lattice Potts model has now been 
solved, (31) using the inversion relation method. A much simplified form of 
(5.12) is given in eq. (30) of that paper: corresponding simplifications can 
be made of (6.32). 
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